Report Finale

Valutazione dell’Accuratezza di GLUCOCARD™ SM

Riferimento ISO 15197:2013 § 6.3
Valutazione dell’Accuratezza del Sistema

Data: 16/12/2015
Study Site / Investigator /Laboratory

<table>
<thead>
<tr>
<th>Name:</th>
<th>Dr. Giancarlo Fuzzi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company:</td>
<td>Ricerche Cliniche Prof. Manfredo Fanfani</td>
</tr>
<tr>
<td>Address:</td>
<td>Piazza della Indipendenza, 18/b</td>
</tr>
<tr>
<td></td>
<td>50129 – Firenze – Italy</td>
</tr>
<tr>
<td>Phone:</td>
<td>+39 055 49701</td>
</tr>
<tr>
<td>Fax:</td>
<td>+39 055 4970322</td>
</tr>
<tr>
<td>E-Mail:</td>
<td>gianni.fuzzi@istitutofanfani.it</td>
</tr>
</tbody>
</table>
Table of Contents

1. Aim of the study ... 4
2. Material and Methods .. 4
3. Results & Discussion .. 6
5. Conclusions ... 12
Aim
The aim of the present study was to evaluate the clinical accuracy of the new GLUCOCARD™ SM SMBG system (hereinafter "SM").
The accuracy evaluation was performed referring to the norm EN ISO 15197:2013.

Material & Methods
A number of 600 glucose measurements on capillary and venous blood samples were performed using the SM system. Measurements were performed using three different lots of sensors (i.e. 200 measurements per lot).
Fresh capillary whole blood samples were obtained directly from finger-pricks of different subjects, i.e. patients undergoing the oral glucose tolerance test and the previous relative SMBG control.
In order to achieve a significant number of measurements in the hypoglycemic (<70 mg/dL) and hyperglycemic ranges (>180 mg/dL), and thus to ensure a wide distribution of glucose concentration values, a certain number of determinations were performed using manipulated heparinised venous blood: samples were supplemented with glucose for achieving high glucose levels, while glucose in venous samples was deliberately depleted for achieving low glucose values.
These measurements were performed within the temperature range 21°C - 23°C.

The strips lots used for the present study were the following:
- **GLUCOCARD™ SM Test Strips**:
 - lot SAM060030-A (lot #A), expiry date 2017-01
 - lot SAM060030-B (lot #B), expiry date 2017-01
 - lot SAM060030-C (lot #C), expiry date 2017-01

The S/N of the meters used in the present study were the following:
- **GLUCOCARD™ SM meters**:
 - EAM250000114, EAM250000116 (used with lot #A);
 - EAM250000115, EAM250000120 (used with lot #B);
 - EAM250000113, EAM250000112 (used with lot #C);

The measurement results obtained with the investigated system were then compared with those obtained with a reference method: COBAS c-501, Roche Diagnostics (“GLUC3”, Hexokinase).

Accuracy was evaluated referring to the requirements reported in EN ISO 15197:2013:
- 95% of individual glucose results shall fall within ± 15 mg/dL of the results of the manufacturer’s measurement procedure at glucose concentrations < 100 mg/dL, and within ± 15 % at glucose concentrations ≥ 100 mg/dL.
- 99% of individual glucose results shall fall within zones A and B of the Consensus Error Grid.

Clinical Accuracy Evaluation of GLUCOCARD™ SM

Results & Discussions

The accuracy of the SM system was evaluated through the following analyses:

- Bias Plot (Bland-Altman), referring to EN ISO 15197:2013 requirements
- Consensus Error Grid (Parkes), as required by EN ISO 15197:2013

The Consensus Error Grid and the Bias Plots are reported in Fig.1-4.

GLUCOCARD™ SM – Lot #A – EN ISO 15197:2013

Accuracy results for [Glucose] < 100 mg/dL, N=70

<table>
<thead>
<tr>
<th></th>
<th>Within ± 5 mg/dL</th>
<th>Within ± 10 mg/dL</th>
<th>Within ± 15 mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>86%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>94%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>99%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accuracy results for [Glucose] ≥ 100 mg/dL, N=130

<table>
<thead>
<tr>
<th></th>
<th>Within ± 5 %</th>
<th>Within ± 10 %</th>
<th>Within ± 15 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>61%</td>
<td>124 (130) 90%</td>
<td>130 (130) 100%</td>
</tr>
</tbody>
</table>

Combined system accuracy results (absolute and relative deviations)

<table>
<thead>
<tr>
<th></th>
<th>Within ± 15 mg/dL & ≤ ± 15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>199</td>
<td>(200) 100%</td>
</tr>
</tbody>
</table>

Figure 1 – GLUCOCARD™ SM, lot #A. On the left: Bias Plot graph and the relative summary table. On the right: Consensus Error Grid graph and the relative summary table.
Clinical Accuracy Evaluation of GLUCOCARD™ SM

Figure 2 - GLUCOCARD™ SM, lot #B. On the left: Bias Plot graph and the relative summary table. On the right: Consensus Error Grid graph and the relative summary table.

Figure 3 - GLUCOCARD™ SM, lot #C. On the left: Bias Plot graph and the relative summary table. On the right: Consensus Error Grid graph and the relative summary table.
Clinical Accuracy Evaluation of GLUCOCARD™ SM

Figure 4 - GLUCOCARD™ SM, All lots. On the left: Bias Plot graph and the relative summary table. On the right: Consensus Error Grid graph and the relative summary table.

Conclusions

The GLUCOCARD™ SM system resulted to be highly accurate in glucose measurement and compliant with EN ISO 15197:2013.

All the strips lots tested resulted to be compliant with both Bias Plot and Consensus Error Grid accuracy requirements.

Investigator:

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Giancarlo Fuzzi</td>
<td>16/12/2015</td>
<td></td>
</tr>
</tbody>
</table>
Studio di Conformità effettuato presso i laboratori
“Ricerche Cliniche Prof. Manfredo Fanfani”

Responsabile dello studio:
Dr. Giancarlo Fuzzi
gianni.fuzzi@istitutofanfani.it

Semplicemente Menarini